
TestMachine
Whitepaper

Andrew Kilbride - Co-Founder CEO
ajk@testmachine.ai

Matthew Lewis - Co-Founder CTO
mjl@testmachine.ai

testmachine.ai

Abstract

Blockchain projects face several challenges that can lead to failure, including lack of time due to repetitive
code reviews, lack of speed due to manual contract testing, and lack of security due to endless tool
integration. These challenges can cause significant delays and financial losses, ultimately leading to
the failure of the project. However, TestMachine provides a comprehensive solution that addresses
these challenges and ensures the success and security of blockchain projects. Our real-time testing
and auditing platform powered by AI eliminates manual code reviews with an on-demand audit, which
allows developers to code while checking for bugs on the fly, saving time and improving productivity.
We leverage industry-standard security tools and proprietary machine learning algorithms to get rid of
manual testing, thus removing expensive delays for product launches. Additionally, we provide a zero-
configuration ecosystem with an intuitive web interface, GitHub integration, and powerful command-line
tools that remove the hassle of installing dependencies that can break the code and make it unsafe.
By combining industry-standard tools with a novel reinforcement learning approach to smart contract
penetration testing and on-demand audit, we help blockchain projects overcome the challenges and
achieve success in a highly competitive industry.

1

testmachine.ai


1 Introduction

TestMachine is a real-time testing and audit-
ing platform for blockchain developers. Our
goal is to provide companies and develop-
ers with the most secure code possible on
the blockchain. Writing secure code for
blockchain applications is an increasingly ur-
gent problem and becoming increasingly diffi-
cult to achieve. On the Ethereum chain alone,
more than 46 million contracts have been de-
ployed, comprising more than six billion lines
of code. As the number of complex smart
contracts and dApps deployed to blockchains
grows, conventional approaches to code secu-
rity — namely the manual review of code by
expert human programmers — will become
untenable within the next two years. TestMa-
chine will be deployed in 2 main phases:

2 Phase I

leverages industry-standard open-source tools
and proprietary machine learning algorithms
to test, analyze, and dynamically expose
known and unknown security vulnerabilities in
smart contracts and dapps. TestMachine pro-
vides an intuitive web interface, tight GitHub
integration for inclusion in existing CI/CD
pipelines, and powerful command line tools
that simplify and secure a developer’s every-
day workflow. Rather than forcing developers
to commit to an expensive, time-consuming
audit at the end of the development cycle,
TestMachine will allow users to continuously
audit blockchain code.

3 Phase II

brings the Surfactant Machine Learning Plat-
form to bear on the problem of smart con-
tract security. Surfactant uses novel reinforce-
ment learning techniques to teach artificially
intelligent agents to detect and exploit vul-
nerabilities in a smart contract. Powered by
deep neural networks and trained on high-
fidelity blockchain simulations, these agents
learn powerful strategies that exploit data ora-
cles, blockchain latency, and complex contract
interactions. TestMachine analyzes these ex-
ploits to ensure developers can mitigate the
vulnerabilities in their contracts and dApps.
The TestMachine platform provides Phase I

and Phase II capabilities to developers as part
of a zero-configuration ecosystem. There is
no need to search for new security tools in
GitHub repositories; there is no need to pro-
vision one’s own servers; and there is no need
to worry about keeping up with best stan-
dards and practices. TestMachine will make
blockchain code security as frictionless and
as compelling as companies like Amazon Web
Services have made deploying complex Web
2 applications. Below we summarize the cur-
rent technical state of TestMachine, focusing
on the system architecture and the details of
the Surfactant machine learning platform.

4 System Architecture

We have developed the core system architec-
ture for TestMachine and are currently build-
ing out the components for both the Phase I
(open source) and Phase II (machine learning)
components. In its current implementation,
TestMachine is built on AWS, mainly using
Kubernetes via the Elastic Kubernetes Service
(EKS) for maximum efficiency and flexibility
in both development and production. Our AI
architecture can explained in 5 areas:

4.1 Interface

This is the user interface of the TestMa-
chine application. It handles all user requests
by interacting with the database and serving
JSON, HTML, CSS, and JavaScript through
HTTPS requests. Depending on the frontend
framework that we end up using, an S3 bucket
will be used to serve static files, while the API
will be hosted in the EKS cluster. The API
will sit behind a production-grade web server
such as NGINX.

4.2 Auth

To maximize security, we will either use ex-
isting third-party identity providers such as
Google, Twitter, or GitHub through OAuth,
or use an internally hosted third-party iden-
tity provider such as Keycloak. Either way,
TestMachine will leverage an internally hosted
solution (possibly Keycloak) to operate as an
identity broker and to authorize data access.

2



4.3 Language Tools

Language tools are the open-source tools that
TestMachine will operationalize to streamlin-
ing the Web3 development experience. For
solidity, these include tools such as OpenZep-
pelin and Slither, but for Vyper the toolbox
looks a bit different. For each language Test-
Machine will have a scalable microservice that
will parse the contract and report analysis re-
sults in both human- and machine-readable
formats.

4.4 Simulation Network

TestMachine will house a variety of solutions
to simulate real-world blockchain networks.
These will range in complexity from single
Ganache instances to larger, multi-node net-
works. There are two components of the
simulation network: The simulation manage-
ment layer will operate to collect metadata on
the simulations, as well as facilitate the net-
working between the machine learning agents
and the nodes hosting the simulation network.
The simulation nodes themselves will capture
as many real-world blockchain network fea-
tures as possible, potentially spread across dis-
parate environments.

4.5 Storage

The database will be hosted by Amazon RDS
and guarded carefully within our security
model. Any uploaded data or data artifacts
too big or inappropriate for inclusion in the
database will be stored in Amazon S3 buck-
ets. TestMachine will be built using the Zero
Trust security model, so all data will be en-
crypted over networks, regardless of whether
they are internal or external. Additionally,
permissions will be assigned according to the
principle of least privilege.

5 Reinforcement Algorithms

As discussed above, the blockchain commu-
nity has a suite of open-source tools for an-
alyzing the quality of smart contracts and de-
tecting known security vulnerabilities. These
tools offer support against known vulnerabili-
ties, they provide little help against unknown
threats and more sophisticated attacks. To ad-
dress this problem, TestMachine uses a novel

machine learning approach based on a set of
techniques known as reinforcement learning.
An artificially intelligent agent observes its en-
vironment to find itself in a state sS. In the
present context, the set of available obser-
vations, denoted S, includes the state of the
blockchain, the properties of the smart con-
tract in question, the value of relevant data
oracles, and so on. The agent takes an ac-
tion according to a policy, (s,a). These ac-
tions are selected from a set of actions, aA ,
and may include, e.g., calling publicly acces-
sible methods on the smart contract, spoofing
a data oracle, pausing for a certain amount of
time, and so on. After an action is taken, the
agent observes the state of the environment
again. The agent subsequently receives a re-
ward, R, based on the action taken and the
new state in which it finds itself. The reward
is designed to encourage specific behavior in
the agent. For example, in the current con-
text, the reward might be the total number
of tokens extracted from the smart contract
into the wallet of the adversarial RL agent.
Training algorithms then update the agent’s
neural network based on the observed states,
actions, and rewards. The update ensures that
the agent learns to maximize the reward over
time. The goal is to learn which action to take
in each state in order to maximize the total re-
ward received over time.

5.1 Training Agents

How do we train the agents — that is, how
do we modify the agent’s neural networks in
order to produce a useful policy? RL is a
so-called unsupervised machine learning tech-
nique, meaning that it does not require vast
amounts of labeled data — that is, contracts
that have been hand-labeled by humans as,
say, “good smart contracts” or “bad smart
contracts”. Instead, we require only a reward
function that specifies what we care about,
and a high-fidelity simulation of the contract
operating on the blockchain. We can then sim-
ulate the RL agent interacting with the con-
tract and allow the RL training algorithms
to intelligently modify the agent’s neural net-
work. A deep neural network consists of many
layers of so-called neurons connected by a web
of weights, as illustrated in Figure 3. These
weights specify the connection strength be-
tween each neuron in one layer and the neu-

3



rons in layers above and below. Note the sub-
script on the policy, : represents the set of
weights that characterize each agent’s neural
network. At each step in the training pro-
cess, we update the weights tt+1 so that the
agent “learns” sophisticated behaviors that
will maximize the reward it receives. We must
do this very carefully, however. The RL prob-
lem is mathematically straightforward, but
training agents can be difficult. If the neural
network parameters are changed too quickly,
the training process may become unstable,
and the policy may never converge to some-
thing useful. To this end, we use a method of
training known as policy gradient algorithms,
and have implemented a variant of policy gra-
dient known as Proximal Policy Optimization
(PPO) [Schulman, 2017], which is both data-
efficient and highly stable. The technical de-
tails of the algorithm are beyond the scope
of this discussion, but PPO provides well-
motivated mathematical safeguards that allow
us to update the neural network as rapidly
as possible without inducing instability into
the training process. This means that Test-
Machine can learn quickly — that is, with
fewer steps of the simulation — while at the
same time ensuring that the policy converges
to something that reliably identifies security
vulnerabilities in smart contracts.

5.2 The Surfactant System

This framework handles the details of auto-
matic differentiation and allows us to rapidly
design and implement deep neural networks
with the flexible topologies required for the
problem at hand. At a high level, Surfac-
tant allows reinforcement learning algorithms
to operate on simulated blockchains. Surfac-
tant currently supports Solidity-based smart
contracts operating on simulated Ethereum
chains, which are implemented as detailed in
the Simulation Network section. Future ef-
forts will extend the platform to other lan-
guages and chains. The long-term goal of the
Surfactant platform is to become largely ag-
nostic to both blockchain and the underly-
ing programming languages. The focus of our
current implementation is two-fold. First, we
have designed deep neural networks with the
notion of transfer learning in mind. By trans-
fer learning, we mean ensuring that the policy

that has been learned in one instance — by
breaking a specific smart contract, for exam-
ple — can be leveraged to rapidly exploit new,
previously unseen contracts. By allowing our
agents to learn across contracts, we can vastly
accelerate the process of vulnerability detec-
tion. Furthermore, consolidating exploitation
strategies into a core neural network (or set of
networks) allows us to improve the accuracy of
our algorithms and differentiate TestMachine
capability from competitors. Ensuring that
learning transfers from one task to another re-
quires, among other considerations, careful at-
tention to the structure of the neural networks
that implement the RL policy. Different smart
contracts have different action and observation
spaces, and we must ensure that the structure
of our networks allow us to capture core ex-
ploitation strategies while adapting as neces-
sary to the different interfaces provided by the
other contracts. Second, we have developed
novel approaches to representing observation
and action spaces in the context of smart con-
tracts. These methods allow us to model the
methods and strongly typed arguments associ-
ated with Solidity-based smart contracts. We
can exploit both discrete and continuous ac-
tions simultaneously when training RL agents
and handle the data types intrinsic to the So-
lidity programming language. Proper han-
dling of observation and action spaces can dra-
matically improve the performance of the RL
algorithms on real-world problems. As the
Surfactant platform continues to develop over
the next several months, we will explore ad-
ditional training algorithms and network ar-
chitectures. We will perform systematic ex-
periments to optimize the size and structure
of the neural networks, statistically character-
ize the time required to identify vulnerabili-
ties in contracts, and determine the minimally
required fidelity of the underlying blockchain
simulations.

6 Disclaimer

This paper is for general information purposes only.
It does not constitute investment advice or a recom-
mendation or solicitation to buy or sell any invest-
ment and should not be used in the evaluation of the
merits of making any investment decision. The opin-
ions reflected herein are subject to change without
being updated.

4


	Introduction
	Phase I
	Phase II
	System Architecture
	Interface
	Auth
	Language Tools
	Simulation Network
	Storage

	Reinforcement Algorithms
	Training Agents
	The Surfactant System

	Disclaimer

